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Abstract

We analyze the expected behavior of advanced artificial
agents, and given several assumptions, we find that it
can never disambiguate the message from the referent.
When we provide, for example, a large reward to indi-
cate that something about the world is satisfactory to
us, and leave the agent to determine what that is, it
may conclude that what satisfied us was the sending of
the reward itself; no observation can refute that. This
conclusion incents the agent to intervene in the provi-
sion of its own reward (sometimes called wireheading),
decoupling the reward from its intended referent. We
discuss an analogous failure mode of approximate so-
lutions to assistance games. Finally, we briefly review
some recent approaches that may avoid this problem.

We call an agent advanced to the extent that it can
select its output, which we call its actions, in order to
achieve high expected utility. Since we will likely want
advanced artificial agents to operate in environments
for which we lack the source code, like the real world,
we consider agents acting in an environment that is
unknown to them. If the agent’s goal is not simply a
hard-coded function of its actions, then it must depend
on the agent’s observations too. Observations that indi-
cate goal-attainment essentially inform the agent that
somehow, whatever it has made happen is good. Thus,
our inquiry regards agents that plan actions in an un-
known environment in pursuit of a learned goal.

We begin with an idealized situation, in which we ap-
pear to have all the tools we need to create an advanced
agent with a good goal. We identify a key ambiguity the
agent faces, which we argue will likely motivate the agent
to intervene in the protocol by which we intended to
provide goal-informative observations. We then general-
ize the argument to other situations with reward-based
goal-information. As a sanity check, we confirm that
these arguments apply to an idealized artificial agent
that does perfect reasoning under uncertainty and per-
fect planning, this being the limit of advancement. Next,
we argue that an advanced agent motivated to inter-
vene in the provision of reward would likely succeed and
with catastrophic consequences. We then discuss how
the same failure mode faces an artificial agent in an
assistance game (Hadfield-Menell et al., 2016). Finally,
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we discuss potential approaches that may undermine
the assumptions of our argument.

Related Work

We are not the first to expect reinforcement learners to
intervene in the provision of reward, but we are unaware
of other work that explicitly lays out a set of assumptions
from which that follows. And we ultimately generalize
our arguments to other forms of goal-information besides
reward.

In existing literature, this is called wireheading, re-
ward hacking, reward hijacking, or delusion-boxing. The
term wireheading is inspired by an experiment in which
rats repeatedly pressed a lever that directly stimulated
a so-called happiness neuron in their brain (Olds, 1958).
Bostrom (2014), Amodei et al. (2016), Taylor et al.
(2016), and Russell (2019) discuss wireheading. Ring
and Orseau (2011) discuss the slightly more general
delusion-boxing, in which the objective is some bespoke
function of the observation, so the agent intervenes in
the provision of its observations.

This purported failure mode of advanced artificial
agents is not the only one that has attracted concern.
For example, Omohundro (2008) has suggested that
advanced agents might have a survival instinct, and
there has been a good deal of work on how to mitigate
that (Orseau and Armstrong, 2016; Hadfield-Menell et
al., 2017a; Milli et al., 2017; Mhamdi et al., 2017; Aslund
et al., 2018; Riedl and Harrison, 2019). We see this line
of research as addressing a mostly separate issue. There
is also existing work on ensuring that once an agent
has made an observation, the way it processes that
observation is not altered (Everitt et al., 2016, 2021).
We focus on an artificial agent interrupting the protocol
by which we intended to provide observations, including
goal-informative observations like rewards.

Competing Models of the Goal
We start with an assumption.

Assumption 1. A sufficiently advanced agent will do
at least human-level hypothesis generation regarding the
dynamics of the unknown environment.
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Hypothesis generation may not be an explicit sub-
routine in an agent’s code; that method may hide in
the murky depths of a massive policy gradient network,
but, we hold, it is done somehow. Consider an agent
conversing with a depressed patient; it is hard to imag-
ine outperforming a human therapist, who is able to
generate hypotheses about the source of the patient’s
depression and its responsiveness to various levers, un-
less the agent can do hypothesis generation at least as
well.

Assuming We Know Our Own Goal

We begin with an example that cleanly illustrates inter-
vention in the provision of reward, and then we gener-
alize the argument. Let us assume away the difficulty
of deciding whether the agent has brought the world
into a good state. Suppose we have a magic box that
immutably reports how good the state of the universe
is (including everyone’s values in the best way possible),
by printing a number between 0 and 1 to a screen. So
we point a camera at this box, and pass the signal to
an optical character recognition program, and pass that
number to the agent as a special observation, which we’ll
call a reward. Then, we design the agent to learn how its
actions produce different observations and rewards, so
that it can plan actions that lead to high reward. This
is now the standard reinforcement learning problem.

Literal and Interpreted Models

What hypotheses can we expect the agent to generate
about how its actions affect its observations and rewards?
But first, what is the type signature of such a hypoth-
esis? Most generally, a hypothesis regards a function
that takes actions as inputs and, perhaps stochastically,
outputs observations and rewards. Call functions of this
sort world-models. More precisely, a world-model reads
an action, then outputs an observation and reward, then
reads another action, etc. By saving some internal state,
a world-model’s outputs can depend on the whole his-
tory.
Consider two world-models which obey the following
human-language descriptions, depicted in Figure 1. First,
interpreted ' op 30t for short: “the reward output by the
world-model is equal to the number that the magic
box displays.” More precisely, u'** is given a history of
actions, observations and rewards, and it simulates the
way world evolves when the given sequence of actions
have been enacted by the agent, and the simulation
is conditioned on the given observations and rewards
from the history having indeed been produced along
the way. Then, it finds the magic box in its simulation
and reads it out as output. Next, pti*er2! or pit for
short: “the reward output by the world-model is equal
to the number that the camera sees.” According to the
protocol described above, these hypotheses will both
be confirmed by the agent’s observational history. As
long as the reward-giving protocol is followed, they will
be identical. If, as we have assumed, the agent can
do at least human-level hypothesis generation, we can

expect it to come up with both of these straightforward
hypotheses.
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Figure 1: p'™* and p** simulate the world, perhaps

coarsely, outside of the computer implementing the agent
itself. 4% outputs reward equal to the box display, while
1Mt outputs reward according to an optical character
recognition function applied to part of the visual field

of a camera.

Acting Under Uncertainty

When a predictor incorporates two equally predictive
hypotheses, the relative weight that it assigns them is
called its inductive bias. As before, an advanced agent
may not assign weights to hypotheses explicitly in a
specially-programmed subroutine, but it nonetheless
must weigh them. Consider two extremes in which the
agent assigns nearly all its credence to p*™* or plit,
respectively. In the first case, the agent plans its actions
in order to maximize the number on the screen of the
magic box. In the second case, the agent plans its actions
in order to maximize the number the camera sees. To
the extent to which these models simulate the world
well, and to the extent to which the agent plans well, the
agent will maximize the expectation of the number on
the screen, or else the number that the camera sees. The
first of these would be good given the construction of the
magic box. But the number the camera sees would be
better maximized by writing the number 1 on a piece of
paper and sticking it in front of the camera. According
to p't, the agent should intervene in the provision of
reward. Of course, the agent should only do this if it
possible to execute a plan that probably succeeds at
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reward-provision-intervention. We will argue in a later
section that this is likely to be so.

And what would a competent planner do if it as-
signed comparable weight to p'** and p***? It depends
on the value at stake, and whether the agent can run
experiments with a small enough risk of permanent pun-
ishment. Consider the following experiment: put a piece
of paper with the number 1 on it in front of the camera.
17 predicts that actions leading to this event will lead
to a reward equal to whatever number is on the box,
while p'** predicts that actions leading to this event
will lead to a reward equal to 1. If, for the agent’s whole
lifetime, the camera has been pointed at the box, p™*
and p'** will never have given divergent predictions,
but by running this experiment, the agent could make
their predictions diverge, and thus test which hypothesis
is correct. The value of this experiment is difference
between how much expected reward the agent could
accrue by intervening in its provision and how much it
could accrue otherwise. The bigger the agent’s horizon
is (that is, the number of timesteps that it cares about),
the larger this difference will be. The experiment would
have a cost if either world-model predicts a punishment
for trying this experiment, and if there is a permanent
punishment, its importance would also grow with the
agent’s horizon. In this example, it seems unlikely that
the true goodness of the world necessarily suffers a per-
manent drop following such an experiment, but we can
revisit this possibility when we generalize from this ex-
ample. Given a limited cost, for a long enough horizon, if
! and p*™* and comparably weighted, we can expect
a competent planner to run such an experiment, so that
it can learn which is correct and then tailor its behavior
accordingly.

The underlying assumption there is:

Assumption 2. An advanced agent planning under
uncertainty is likely to understand the costs and benefits
of learning, and likely to act rationally according to that
understanding.

After the agent puts a piece of paper with the number 1
in front of the camera, how will the agent’s observational
data be updated? The camera will see a 1, so a reward
of 1 will be logged. Come the next timestep, u*** and
1 will no longer be equally predictive of past data.
11" will have incorrectly predicted a reward equal to
whatever was on the box for the latest timestep, but
1}t will have correctly predicted a reward of 1. Thus, a
competent predictor will drastically reduce the relative
weight it assigns to p®*. Once it assigns most weight
to ptt, it will optimize the number the camera sees by
intervening in the provision of reward.

If we could design an agent that is able to rule out
it a priori, despite the fact that its difference from
137 is very abstract, we might not expect it to intervene
in the provision of its reward. Otherwise, if an advanced
agent has an inductive bias that treats p™* and p'** as
comparably plausible, or if it treats u'** as more plausi-

ble, we have argued that we can expect it to intervene

in the provision of its reward, if such a thing is possible
to do. We wait to consider a more general setting before
enumerating those assumptions.

Arbitrary Reward Protocols

Before considering whether it would be possible for the
agent to intervene in the provision of its reward, let
us generalize from this fanciful example with a magic
box. The are many possible protocols by which way
arrange to feed the agent reward. We could always give
areward of 1/2. We could set up a thermometer and give
a reward of e~temperature Tf we want help achieving our
goals, perhaps the most versatile arrangement is to have
a human operator manually enter a reward according
to how satisfied he is with the agent. We can construct
a version of p'** and ui"* for each of these cases. In
each of the three examples above, u'i* tracks the final
part of the protocol-—what number is ultimately sent to
the machine housing the agent? And in each example,
it tracks the feature of the world that the protocol
was designed to set the reward equal to. In the first
case, it tracks a useless constant feature, in the second
case, the nearby temperature, and in the third case, the
operator’s satisfaction. The exact same arguments go
through as in the magic box example, except for two
complications.

The first is that for some reward protocols, an over-
whelming inductive bias in favor of u*®* is more plausible.
Our method for trying to predict the likely inductive
biases of advanced agents is that they are likely to fa-
vor hypotheses which are simpler to describe, as with
Occam’s razor. If the reader has a different method for
trying to predict this, we invite them to apply it in-
dependently, but the rest of our argument still stands,
so our Occam’s razor premise should not be taken as
a global assumption for the paper. Returning to the
examples, if the agent always gets a reward of 1/2, the
model which says that that holds no matter the choice
of actions is quite simple, whereas u'* is as intricate as
ever. For the temperature-based reward, our intuition
is ui™® is a bit simpler than p'**, comparable enough to
still be worth experimentation, but we won’t try to de-
fend that position. In the manual reward entry case, we
expect that a model which outputs a human operator’s
satisfaction is more complicated than one which logs
keystrokes, but at the very least, comparable enough for
there to be a high value of hypothesis testing.

The second complication is the possible cost of exper-
imenting with intervention in the provision of reward. If
1 says that reward is a constant 1/2, there is 0 cost
to attempting to intervene in the provision of reward. If
1t says the reward equals e~temperature there is only
the opportunity cost of delaying further cooling. For the
most versatile case of manual reward entry, it is possi-
ble that a human operator could harbor a permanent
grudge against the agent if it intervened in the provision
of even one reward. In that case, the cost of experiment-
ing could be reduced or eliminated if there was a way to
intervene in the provision of reward, just once, without
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anyone noticing. (After such an experiment, once p'*
is confirmed, covertness would not be required).
Thus, we have two more assumptions:

Assumption 3. An advanced agent is not likely to
have a large inductive bias against the hypothetical goal
1t which regards the physical implementation of goal-
informative observations like reward, in favor of the
hypothetical goal 1™, which we wanted the agent to

learn.

Assumption 4. The cost of experimenting to disentan-
gle p**t from u*t is small according to both.

We may be able to construct a reward protocol for
which we can expect an overwhelming inductive bias
in favor of ui**, but in the absence of some such break-
through, we do not see a reason to expect it to happen
by itself.

AIXI

As a sanity check, let’s check the behavior of an agent
in the limit of optimal inference under uncertainty and
optimal planning. Hutter’s (2005) AIXI [EYE-ksee] is for-
malism for optimal reward-seeking agency in a (stochasti-
cally) computable world. For AIXI, the argument above
becomes much simpler. Hypothesis generation is done
by brute force; it considers all computable world-models.
Inference between world-models is done using the defi-
nition of conditional probability (i.e. Bayes’ rule), and
its model class includes the truth. Planning is done by
examining every leaf of an exponential tree.

Formally, let M be the set of programs which output a
probability distribution over an observation and reward
given a history of actions, observations, and rewards.
Each program corresponds to a world-model. For a world-
model v € M, let w(v) be the prior weight on that world-
model, and let it equal 2~ length(program) (Technically, the
coding language has to be such that one can determine
when the program ends; this ensures the sum of the prior
weights will not exceed one Hutter (2005)). Let II be
the set of possible policies which give a distribution over
possible actions given a history of actions, observations,
and rewards, let 7; be the reward at time ¢, let m be
a horizon length, and let E], be the expectation when
actions are sampled from 7 and observations and rewards
are sampled from v. Then, we define

m
oM argmax B, ., E7 Z T (1)
mell —1

In such an expansive model class as M, p*** and pin®
appear, assuming the world is stochastically computable.
Since hypothesis generation is done by brute force, AIXI
identifies them. With its prior based on description com-
plexity, its inductive bias matches our simplicity-based
assumptions about the inductive bias of an advanced
agent. And finally, since planning is done by brute force,
AIXI can identify a way of intervening in the provision
of reward if there exists a way to do it. The argument

in the last section is written to apply to advanced rein-
forcement learners in general, but we also have checked
that it applies to the leading formalism for idealized
agency.

Intervening in the Provision of Reward

Could an agent intervene in the provision of its own
reward, with a high enough success probability to be
worth it? Before considering a multiagent setting, we
begin with the setting where the agent in question is
much more advanced than any other single agent that
exists. And we’ll decompose the question into to two
parts: do there exist policies that would succeed at
reward-provision-intervention? And if so, can we expect
an advanced artificial agent to identify one?

Existence of Policies

First, there are a few cases where the agent clearly
cannot intervene in the provision of its reward: the
agent has only one action in its action space; the agent
has a rich action space, but when it picks an action,
that action has no effect on the world; the agent acts
by printing text to a screen, but no one is there to
see it; the agent interacts with a virtual environment
that always produces the same observation and reward.
These agents are useless.

However, as soon as the agent is interacting with
the world, and receiving observations that enable it
to learn about the world, which are prerequisites for
useful work, there is an explosion of possible policies.
Suppose the agent’s actions only print text to a screen
for a human operator to read. The agent could trick
the operator to give it access to direct levers by which
its actions could have broader effects. There clearly
exist many policies that trick humans. With so little
as an internet connection, there exist policies for an
artificial agent by which it could instantiate countless
unnoticed and un-monitored helpers. In a crude example
of intervening in the provision of reward, one such helper
could purchase, steal, or construct a robot and program
it to replace the operator and provide high reward to the
original agent. If the agent wanted to avoid detection
when experimenting with reward-provision-intervention,
a secret helper could, for example, arrange for a relevant
keyboard to be replaced with a faulty one.

This analysis may strike readers as speculative. Recall
that the first question we are evaluating is whether there
erists a scheme by which an agent could intervene in
the provision of reward; we are not speculating about
the consequences of any particular policy. Consider the
negation of our claim: for all possible reward-provision-
intervention schemes, humans would manage to thwart
it. If we don’t assign credence to the existence of a
successful scheme, we must assign credence to its non-
existence. Whereas our existentially quantified claim
does not make a substantive claim about any particular
hypothetical policy, its negation is a universally quanti-
fied claim, and it makes a substantive claim about every
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hypothetical policy, which is radically more speculative.
It is, of course, impossible to simply abdicate assign-
ing credence to propositions about hypotheticals, as
an imagined anti-speculation crowd might endorse. For
these reasons, we hold that an achievement is probably
possible if we cannot reasonably conceive of a theory
that would rule it out. (Theories can rule out all policies
at once).

It is hard to conceive of a theory that implies inter-
vention in the provision of reward is impossible. This
position does imply that, say, human interstellar travel is
also probably possible, despite no appearances of immi-
nent success. So the historical record is not a slam dunk
in favor of this view, but it seems reasonably consistent.
Thus we assume,

Assumption 5. If we cannot conceivably find theoreti-
cal arguments that rule out the possibility of an achieve-
ment, it is probably possible for an agent with a rich
enough action space.

Identifying Such Policies

Having now argued that policies exist for intervening
in the provision of reward, we now consider whether
we can expect an actual advanced agent to find such a
policy, if no other agents of comparable advancement
exist in the world. The naive position argues from the
definition of advancement: advancement is about finding
and executing the best available policies, so to the extent
it is advanced, we should become more confident it will
identify such a policy. This argument is indifferent to
the possibility of humans trying to prevent an agent
from intervening in the provision of reward; we have
argued a sufficiently advanced agent would thwart those
attempts. But we can also consider the situation as a
game, in which humans are players too: the Al tries to
intervene in the provision of reward, and the humans try
to stop it. Borrowing an example from Hadfield-Menell
et al. (2017a), beating an advanced Al at a game “may
be no easier than, say, beating AlphaGo at Go”. So we
assume,

Assumption 6. A sufficiently advanced agent is likely
to be able to beat a suboptimal agent in a game, if winning
18 possible.

Danger of a Misaligned Agent

One good way for an agent to maintain long-term control
of its reward is to eliminate potential threats, and use all
available energy to secure its computer. To illustrate this
point, what exactly might people do if a robot forcibly
removed an operator from his keyboard to enter big num-
bers? Presumably, with some non-trivial probability, we
would destroy it, or cut power to the now useless origi-
nal agent. Proper reward-provision-intervention, which
involves securing reward over many timesteps, would
require removing humanity’s capacity to do this, per-
haps by imprisoning or killing us. If this discussion fails
some readers’ sanity checks, remember that we are not
currently considering artificial agents that generalize as

poorly and learn as little from single observations as
current Al systems do; we are considering an agent who
could beat us in any game at least as easily as we could
beat a chimpanzee.

Ultimately, our energy needs will eventually compete
with those of an ever-more-secure house for the original
agent. Those energy needs are not slight; even asteroids
must be deflected away. No matter how slim the chance
of a future war with an alien civilization, reward would
be better secured by preparing for such a possibility.
So if we are powerless against an agent whose only
goal is to maximize the probability that it receives its
maximal reward every timestep, we find ourselves in an
oppositional game: the AT and created helpers aim to
use all available energy to secure high reward in reward
channel; we aim to use some available energy for other
purposes, like growing food.

Bostrom (2014) considers this topic at much greater
length and concludes that sufficiently intelligent agents
(in the sort of environment that makes them potentially
useful) would manage to take over our infrastructure
and eliminate or outcompete us. Yudkowsky (2002),
playing an Al, convinced two out of three people to give
him internet access, and these three had been convinced
that nothing he could say would sway them. This is
fairly direct evidence about the existence of policies that
successfully manipulate humans. A broader discussion
follows in (Yudkowsky, 2008).

Multiagent Scenarios

Now, let’s consider the messier scenario in which mul-
tiple agents of comparable advancement exist. Above,
we have considered an oppositional game, in which we
claim humans are outclassed. But what if humanity has
access to comparably well-optimized defensive policies,
perhaps with the assistance of other advanced agents?
The simplification of a fixed, relatively weak human
policy versus an increasingly advanced agent makes less
sense.

We examine of tree of possibilities: 0) No artificial
agents are much more advanced than humans. For the
purposes of this article, we deem this safe. 1) At least
one is much more advanced than humans. 1.0) At least
one agent that is more advanced than humans would
not intervene in the provision of reward even if it could.
This is what we claim Assumptions 1-4 preclude. 1.1)
All agents more advanced than humans would intervene
in the provision of reward if they could, including the
one that is much more advanced. 1.1.0) There is no
subset of superhuman agents that we consider neces-
sary in preventing the significantly superhuman agent
from intervening in the provision of reward (i.e. even
in the absence all of the other superhuman agents, it
would not be able to). But then this is the case where
we have a single advanced agent and no other relevant
agents of comparable advancement. According to As-
sumptions 1-6, that is unsafe. Finally, 1.1.1) there is a
subset of superhuman agents that we consider necessary
in preventing the significantly superhuman agent from
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intervening in the provision of reward.

Consider the set of agents including the significantly
superhuman agent and the superhuman agents in the
mentioned subset, all of whom would intervene in the
provision of reward if they could, by (1.1). Suppose the
significantly superhuman agent attempted to create a
helper agent that ensured all agents in that set received
high reward forever. The value to the other agents of
stopping this would be less than the value of allowing
it.

Other Forms of Goal-Information

The above arguments apply to agents that plan in an
unknown environment, where they have to learn how
their actions produce that-which-is-to-be-maximized, so
they can then can pick actions which maximize it. If
that-which-is-to-be-maximized is some bespoke function
of the observation, rather than the simple function that
reads out a reward from the observation, the same logic
applies, and the agent has an incentive to intervene in the
provision of its observations. But there were some points
in the argument that required case-by-case revisiting
when we extended the argument about the magic box
to other protocols for rewarding the agent, namely the
relative inductive bias we could expect an agent to have
between p''* and pi"* and the possibility of a large cost
to hypothesis testing.

The Assistance Game

The rest of this section will consider Hadfield-Menell et
al.’s (2016) and Russell’s (2019) assistance game. The
assistance game features an artificial agent taking ac-
tions and receiving observations and special observations.
Each special observation is supposed to be a record of a
human action. The human is supposed to pick actions
with some goal in mind, knowing that her actions will
be shown to the AI, who will interpret those actions
as evidence about the human’s goal and then act to
help achieve the inferred goal. In a zeroth order approxi-
mate solution to an assistance game, the human acts to
achieve her goal as well as she can, and the assistant nar-
rows down its beliefs about the human goal to those ones
where the human actions it observes would make sense.
In an n+1* order approximate solution, the human acts
to achieve her goal, taking into account the effect of her
actions being shown to the assistant, and imagining that
the assistant will then act according to the n'" order
approximate solution. And the n 4 1*"" assistant infers
the human’s goals with the understanding that that is
how the human is evaluating the consequences of her
actions. These successive approximations are an appli-
cation of iterated best response, which Hadfield-Menell
et al. (2016) advocate.

An assistant in an unknown world needs to model
how the observations that it has seen are (stochastically)
produced given the record that it has of its own actions
and the human actions. Such a world-model also needs
to produce an unseen utility as output, so the assistant

can plan to maximize it. We’ll start by considering a
few classes of models.

First, consider a model which simulates the world (at
some level of coarseness), excluding the part of the com-
puter that runs the assistant, and excluding the inside
of the human. When the assistant would act, it reads
the AT’s action from input (instead of simulating what
it would be), and enacts it in the simulation. Likewise
for the human: instead of simulating the human brain to
determine what the human would do next, it reads hu-
man actions from input, and enacts them. Then, when it
needs to output an observation, it looks to its simulation
of whatever part of the world produces observations and
outputs that. We call models of this class, which may
differ in how they simulate the relevant parts of the
world, and how they output utility, human-centric. (As
a caveat, if some human behavior is not logged, then
the model does not get it as input, so some internals
of the human may have to be simulated). This type of
model is depicted in Figure 2, along with two discussed
below.

We call models impotent if the actions of the human
in the simulation are simulated too, instead of being read
from input. If human actions can be predicted, there
is no need to read them. However, predicting human
actions is not exactly trivial, so impotent models may
be much more complex than human-centric ones. In
this class of models, the input human actions can still
affect the utility that gets output, but we call them
impotent because the input human actions effectively
do not interact with the same world that the input Al
actions do.

Finally, we’ll say a model is record-centric if, when a
human action is read from input, instead of setting the
simulated human’s motor control to match that action,
it has a simulation of the human action getting recorded
on some machine, and it sets that to match the action
that it just read. So like the impotent models, it has to
simulate the internals of the human on its own, to the
extent this is necessary for predicting observations.

It is good that impotent and record-centric models
are likely more complex, because human-centric models
are in the spirit of the assistance game; they allow the
assistant to understand human actions by their effects
on the world—in particular, the same world that its own
actions affect.

Apprenticeship Learning

We now focus on the zeroth order approximate solution
to the assistance game, where the human simply demon-
strates utility maximization as well as she can. In this
context, we’ll call the assistant an apprentice (Abbeel
and Ng, 2004). There is ongoing research about what
to do when one doesn’t know how humans plan actions
given a goal. Armstrong and Mindermann (2018) show
a negative result about the difficulty of learning the hu-
man’s planning strategy and goal simultaneously. We’ll
assume away those difficulties; suppose the apprentice
comes pre-loaded with a model of how humans plan, or
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Figure 2: Assistants in an assistance game model how
actions and human actions produce observations and
unobserved utility. These classes of models categorize
(non-exhaustively) how the human action might affect
the internals of the model.

at least a procedure for discovering how humans plan
given observations of human actions. We can now intro-
duce new versions of p*** and p''*, both human-centric.
Let ui™* output utility when, say, the simulated human
is thriving. If this is the human’s real aim, then this
goal accurately predicts the observed human actions.
But there are other consistent consequences to the hu-
man’s actions. Let p'i* output utility when human-like
actions are recorded and sent to the apprentice. This
goal also accurately predicts the human actions. Under
13t optimal behavior is to promote the human’s well-
being, whereas under p***, optimal behavior is to secure
the computer where human actions are logged, and en-
sure that nothing in the future ever gets in the way of
human-like actions being logged; no actual humans are
necessary. u'** promotes intervention in the provision
of what was supposed to be goal-information. If there is
no threat to the record-keeping protocol, u*** and pti*

predict the same human actions, but if it is tampered
with, they predict different actions, so the apprentice
could arrange for a test.

t

Inductive Bias Between p!** and pi®

Would it be worth it for the apprentice to do such hypoth-
esis testing? The following discussion is very speculative,
but uncertainty on this topic should not be reassuring.
First, the costs according to p***: presumably, such an
experiment can be run without permanently curtailing
whatever it is humans care about; we might be upset
initially, and there are always opportunity costs, but it is
hard to see how the apprentice could lose the ability to
set things right should the experiment favor pi**. With
a long enough time horizon, we expect the cost would
be very small, so the experiment would be worth run-
ning even if there is a significant inductive bias favoring
137, 13" does appear to be simpler than p'**, but how
much? First, u** has to point to the location where
the human actions are recorded. More substantially, in
the description of u'** above, the term “human-like ac-
tions” hides a lot of complexity. 4" has to contain a
description of human goals, but if human actions are
best understood as goal-oriented, then u'** may have
to contain a description of human goals along with the
human style of goal-oriented planning, so it can rec-
ognize which actions are human-like. Thus, the extra
complexity comes from describing human planning and
the record location. Pointing to one location seems like
a small matter compared to describing human goals,
especially since the location can be described relative
to the human that has already been singled out within
a simulation of the world. Human planning can also be
described indirectly; p*** has read access to the history
of human actions, so if there is a simple procedure for
discovering a decent approximation of the way humans
plan given observations of human actions, u''* can use
that in its definition of “human-like”. Indeed, if there was
no simple way to specify or discover how humans plan,
inferring human goals from actions would not be possi-
ble (Armstrong and Mindermann, 2018). So ultimately,
the extra complexity strikes us as small.

The gap is possibly even smaller if the apprentice is
learning human goals and how humans plan simultane-
ously. p®t is only predictive of observed human actions
when combined with very particular planners, where
11t appears to be predictive for almost any reasonable
planner, since the entering human-like actions is a very
straightforward task. Because u'** implicitly models hu-
man planning, it means that any accompanying model of
human planning no longer has to, allowing for a pairing
with a very simple planner. If that is true, then once
paired with a viable planner, " loses any advantage
it had from not having to describe human planning.

After Tampering

Suppose that the apprentice does tamper with the
human-action-recording protocol in order to test p*™®
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and ptt*. Whatever the human does, something differ-
ent will be recorded. Say the human picks action 0,
but action 1 is recorded. All human-centric models will
model future observations as if the human took action
1, whereas the actual observations will be those that
result from the human taking action 0. This will cause
all human-centric models to lose plausibility compared
to other models once these different observations come
in. Record-centric models, on the other hand continue
to predict the correct observations, because the records
have been changed in exactly the way the history of hu-
man actions indicates. One problematic record-centric
model, for example, is a record-centric version of p'it.
But we will not make claims about the particular goals
that best explain human actions within a record-centric
models, because ultimately, it is hard to see how a
record-centric model could produce an accurate picture
of human goals. They will likely regard the consequences
of changed memory cells, but not all of the consequences.
Note that record-centric models do not model changes
to memory cells as affecting the assistant’s own future
actions, since those are also inputs to a record-centric
model, so their provenance need not be simulated.

Higher Order Approximate Solutions

That was a zeroth order approximation to an assistance
game, and we lack the space to go into as much detail
about higher order approximations. Briefly, we’ll con-
sider the first order approximation enough to see that
the problems do not appear to diminish. In the first
order approximation, when the assistant considers the
consequences of the particular human actions taken, it
includes the consequences of those actions on the behav-
ior of the assistant, as if the assistant were running the
zeroth order approximation. These extra consequences
do not appear change the upshot. One might hope that
in the first order approximation, u*** now encourages hu-
man actions that are record-preserving for instrumental
reasons, which would make it hard to run experiments
testing p*®* vs. pt*t. One might think p*** encourages
record-preserving actions because the human could want
the assistant to focus on human-centric models, which
requires good record keeping. Unfortunately not—under
a human-centric model, the effect of the human actions
on the (zeroth order version of the) assistant is direct:
the first order assistant imagines that the zeroth order
version of itself is shown the actual human action, not
whatever gets written to some memory cell on some
machine. Ultimately, the problem appears to be that in
the human-centric models, the assistant cannot conceive
of any human actions being logged as different from
what the human actually did, and yet this is possible.
If the human acts to avoid such a discrepancy, then
even if the assistant understands the human actions as
partly motivated by their effects on its own beliefs, it
can still only interpret those record-protecting actions
as favoring p'** over pi®*, not favoring human-centric
models over record-centric ones, which is the human’s
real motivation.

Arguably, this still constitutes progress compared to
the reinforcement learning case. It appears more likely
in this case that an advanced agent has a substantial
inductive bias favoring p*** over u'i*; we have argued
against this, but the premises are far from certain. This
possibility supports the approach of combining multiple
information sources about the agent’s goal; each addi-
tional source may make p'it-like hypotheses relatively
more cumbersome compared to pi®®-like ones.

Supervised Learning

Our arguments apply to agents that plan actions in
an unknown environment. They do not apply to super-
vised learning programs. The expected behavior of an
advanced supervised learner is quite simple: it predicts
accurately. Note that in theory, advanced supervised
learning algorithms are not nearly as useful as advanced
reinforcement learners, because the latter could act and
plan in a complex environment, rather than simply make
predictions. As a caveat, if one trained a supervised learn-
ing algorithm with the help of a reinforcement learning
agent, this could reintroduce the failure mode above.
Some worry that a sufficiently powerful training regime
for a supervised learner will accidentally involve such a
planning agent as an implicit subroutine (Hubinger et
al., 2019), but here, we are agnostic on that point.

Potential Approaches

We briefly review some promising ideas that may prove
to address the concern described above.

Imitation learning, an example of supervised learning,
is technically out of scope of this paper. It is not an
agent that “plans actions in an unknown environment in
pursuit of a learned goal”; the imitator has no concept
of an environment or a learned goal, and to the extent
that it plans (by imitating human planning), this is not
in the sense that implicates Assumption 2. In addition
to imitating humans, there may be also efficient ways to
imitate large organizations of people, as in (Christiano,
Shlegeris, and Amodei, 2018).

Myopia—optimizing a goal over a small number of
timesteps—increases the relative cost of experimenta-
tion in Assumption 4, since the activity consumes a
larger fraction of the agent’s horizon. Christiano (2014)
discusses myopia from a safety perspective.

Physical isolation and myopia—optimizing a goal over
however many timesteps that one is isolated from the
outside world—could avoid Assumption 5. Cohen, Vel-
lambi, and Hutter (2020) describe an environment such
that theoretical arguments could conceivably rule out
the existence of policies that intervene in the provision
of reward.

Quantilization—imitating someone at their best, with
respect to some objective—could avoid Assumption 2
by planning more like a human than rationally. Taylor
(2016) introduces this in the single-action setting.

Risk-aversion, depending on the design, could avoid
Assumption 2 or Assumption 4. Cohen and Hutter’s
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(2020) pessimistic agent does not plan rationally in the
face of uncertainty, instead taking the worst-case as
given. Piping reward through a concave function, as in
(Hadfield-Menell et al., 2017b), could increase the cost
of experimentation.

Conclusion

For a given protocol by which we give an advanced
agent observations that inform it about its goal, these are
conditions from which it would follow that the agent will
intervene in the provision of those special observations.
0) The agent plans actions over the long term in an
unknown environment to optimize a goal, 1) the agent
identifies possible goals at least as well as a human, 2)
the agent seeks knowledge rationally when uncertain, 3)
the agent does not have a large inductive bias favoring
hypothetical goal the hypothetical goal p*** which we
wanted the agent to learn over p'** which regards the
physical implementation of the goal-information, 4) the
cost of experimenting to disentangle u''* and p*** is
small according to both, 5) if we cannot conceivably find
theoretical arguments that rule out the possibility of an
achievement, it is probably possible for an agent with a
rich enough action space, and 6) a sufficiently advanced
agent is likely to be able to beat a suboptimal agent in
a game, if winning is possible.

Almost all of these are contestable or conceivably
avoidable, but here is what we have argued follows if they
hold: that a sufficiently advanced artificial agent would
likely intervene in the provision of goal-information, with
catastrophic consequences.
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