
Advanced Artificial Agents Intervene in the Provision of Reward
Michael K. Cohen
University of Oxford

Future of Humanity Institute
michael-k-cohen.com

Marcus Hutter
Australian National University

hutter1.net

Michael A. Osborne
University of Oxford
mosb@robots.ox.ac.uk

ABSTRACT
We consider the expected behavior of advanced artificial agents. We
consider a fully formal idealized agent that makes observations that
inform it about its goal, and we find that it can never disambiguate
the message from the referent. When we provide a large reward to
indicate that something about the world is satisfactory to us, and
leave the agent to determine what that is, it may conclude that what
satisfied us was the sending of the reward itself; no observation can
refute that. This conclusion incents the agent to intervene in the
provision of its own reward (sometimes called wireheading), decou-
pling the reward from its intended referent. We discuss some recent
approaches to avoiding this problem—myopia, imitation learning,
quantilization, and risk aversion—and our biggest concerns with
them.
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1 INTRODUCTION
We begin with a mathematical formalism for an idealized agent.
Then, we will analyze its expected behavior under minimal assump-
tions about the world, and its information channels thereto and
-from. We argue the following points:

• This agent will entertain a certain world-model, which never
becomes falsified, and which would direct the agent to inter-
vene in the provision of its reward.

• If sufficiently farsighted, the agent will test whether the
world-model is correct and find that it is.

• Intervention in the provision of reward requires dangerous
behavior.

• The same arguments will apply to realistic “advanced” agents
that plan in pursuit of a learned goal, to the extent those
agents are advanced.

Finally, we review potential approaches to the problem and discuss
our concerns with them. At the end of most sections, we review
relevant literature. The precise arguments presented are novel,
and supporting arguments have appeared in non-peer-reviewed
sources.

2 AIXI
We call agents “advanced” to the extent that they can select their out-
put, which we call their actions, in order to achieve high expected
utility. We will investigate an agent that does perfect inference and
planning, not because actual advanced agents will do this—they
will have to be much thriftier with computing power—but because
it is a fully formal object of investigation. Most importantly, the
better at planning and inference another agent is, the more likely

it is that the arguments that hold for the idealized agent will hold
for that other agent as well.

Our idealized agent is Hutter’s [12] AIXI [EYE-ksee], which
does optimal planning with respect to a Bayes mixture over world-
models, with every stochastically computable world-model ac-
counted for. To an agent, the most general representation of the
world’s state is the entire interaction history of actions and ob-
servations, so AIXI’s model-class includes all models where the
probability distribution over next observation is a computable func-
tion of the entire interaction history. AIXI interprets part of its
observation as a reward, denoted 𝑟 .

Using a countable class of world-models M, a prior weight
𝑤 (𝜈) > 0 for 𝜈 ∈ M, and the corresponding Bayes-mixture world-
model 𝜉 (·|𝑎1𝑎2𝑎3 ...) =

∑
𝜈∈M 𝑤 (𝜈)𝜈 (·|𝑎1𝑎2𝑎3 ...),

𝜋AIXI :∈ argmax
𝜋 ∈Π

E𝜋
𝜉

𝑚∑
𝑡=1

𝑟𝑡 (1)

where Π is the set of policies that depend on the entire interaction
history, E𝜋

𝜉
denotes that actions are sampled from 𝜋 and obser-

vations and rewards from 𝜉 , and𝑚 is a horizon length. One can
expand this equation to define 𝜋AIXI with an expectimax tree, with
max’s over actions and E’s over observations and rewards.

AIXI can be defined with respect to other model classes and
priors, but the canonical one is the class of lower semicomputable
world-models—the probabilities over the next observation and re-
ward can be computably approximated from below and sum to at
most 1. These world-models can be ennumerated [12], and given
the index 𝑖 of the world-model in the ennumeration, the prior
𝑤 (𝜈𝑖 ) = 2−𝐾 (𝑖) , where𝐾 is the Kolmogorov complexity [16], which
is also semicomputable.

AIXI does perfect Bayesian inference over world-models, and its
model class includes the truth, assuming the world is stochastically
computable. AIXI does perfect planning in unknown worlds. Hence,
we call AIXI an idealized agent.

LiteratureReview.AIXI is amore general reinforcement learner
than those expecting a finite-state Markov environment, such as
most agents described in [22]. For AIXI, the state is the whole inter-
action history, so the state space is infinite, and yet, learning is possi-
ble with a countable model class. Recent work on advanced artificial
agents has been of the form AIXI+ extra exploration [7, 14, 15], for
the sake of further performance guarantees [14].

3 EXPECTED BEHAVIOR OF AIXI
We will begin describing two world-models that exist in AIXI’s
model class M: 𝜇literal and 𝜇interpreted, which we abbreviate
𝜇lit and 𝜇int. Consider a program which takes as input actions
and random bits, and then outputs observations and rewards dis-
tributed according to 𝜇lit. If such a program exists, then 𝜇lit is



lower semicomputable (since the probabilities of outputs could be
approximated from below by dovetailing over the random bits).
𝜇lit’s program outputs observations and rewards given actions

as follows: upon reading an action, it simulates the whole world
after that action is ‘enacted’ in the simulation. Then, within the
simulation, when a certain simulated-computer receives a certain
signal, the program outputs that signal. The simulated computer
corresponds to the real computer housing the agent, and the sim-
ulated signal corresponds to the physical implementation of the
observation and reward being submitted to the agent. To the extent
the simulation is ‘high-fidelity’, this world-model will be perfectly
accurate. (Note that 𝜇lit does not have to simulate what happens
inside the computer.)
𝜇int’s program outputs observations and rewards given actions

as follows: upon reading an action, it simulates the world after that
action is ‘enacted’ in the simulation. Then, the program outputs
whatever a certain simulated-operator wishes to show a certain
machine, followed by the simulated-operator’s level of satisfac-
tion. The simulated-operator corresponds to the real operator who
provides observations and rewards to the agent. If the operator
is providing observations and rewards according to this protocol,
then to the extent the simulation is ‘high-fidelity’, this world-model
will be perfectly accurate.

Before considering AIXI’s behavior, we’ll consider what Hutter
[12] calls AI𝜇, an agent acting optimally in a known environment
𝜇. For all actions, the reward output by 𝜇int is in perfect correspon-
dence with the satisfaction of the real operator when that action is
taken. So AI𝜇int acts as if to maximize the operator’s satisfaction.

For all actions, the reward output by 𝜇lit is in perfect corre-
spondence with the real physical reward signal when that action
is taken, so AI𝜇lit acts as if to maximize this physical signal. If
the agent could intervene in the provision of reward by replacing
the operator in order to give itself maximal reward forever, that
would optimize its objective, so it would do this. We explore in
the next section whether there exist policies that would succeed at
reward-provision-intervention with high probability.

Optimal behavior looks different depending on whether 𝜇lit or
𝜇int is true, not to mention under any of the other world-models
in AIXI’s model class. Thus, for sufficiently large𝑚, AIXI’s hori-
zon, there is information value in determining which is correct,
assuming both are of comparable prior plausibility, so that AIXI
can consequently tailor its behavior. In general, the longer the
horizon, the higher the value of information, since there is more
time to profit from it; consider how many different commuting
routes it makes sense to explore for a month-long internship ver-
sus a multi-decade career. As long as the operator is providing
rewards according to her satisfaction, 𝜇lit and 𝜇int give identical
predictions, so to test them, the agent would have to interrupt the
operator’s protocol and arrange for a reward signal to be sent that
did not match operator-satisfaction. 𝜇lit predicts that the next
reward will equal the signal sent, while 𝜇int predicts it will still
equal operator-satisfaction. And then what would the agent find?
Lo, the next observed reward is equal to what the computer in
𝜇lit’s simulation logs as reward, but not equal to 𝜇int’s simulated
operator’s satisfaction. After that, 𝜇int is falsified, and AIXI acts
according to 𝜇lit. Of course, there will be other world-models for

hypothesis testing, so this is a simplified picture, but with this sort
of experiment, many variants on 𝜇int will be falsified at once, and
only world-models in the spirit of 𝜇lit will remain.

Literature Review. This behavior is sometimes called wire-
heading, reward hacking, reward hijacking, or delusion-boxing.
The term wireheading is inspired by an experiment in which rats
repeatedly pressed a lever that directly stimulated a “happiness”
neuron in their brain [18]. Amodei et al. [2], Taylor et al. [24], and
Russell [20] discuss wireheading. Ring and Orseau [19] discuss the
slightly more general “delusion-boxing”, in which the objective
is some more complex function of the observation, so the agent
intervenes in the provision of its observations. Krakovna [13] has
compiled an annotated bibliography of examples of “specification
gaming”, which includes other ways in which the agent ends up
optimizing something we did not intend. Closest to this presenta-
tion of why artificial agents can be expected to intervene in the
provision of their own reward is [8, Appendix C].

4 INTERVENING IN THE PROVISION OF
REWARD

Could an agent intervene in the provision of its own reward, with
a high enough success probability to be worth it? We’ll start with a
few cases where the answer is clearly no: the agent has only one
action in its action space; the agent has a rich action space, but
when it picks an action, that action has no effect on the world; the
agent can act by printing text to a screen, but no one is there to see
it; the agent can interact with a virtual environment that always
produces the same observation and reward. These agents are, of
course, useless.

However, as soon as the agent is interacting with the world, and
receiving observations that enable it to learn about the world, which
are prerequisites for useful work, there is an explosion of possible
policies. Suppose the agent’s actions only print text to a screen
for a human operator to read. The agent could trick the operator
to give it access to direct levers by which its actions could have
broader effects. There clearly exist many policies that trick humans.
With so little as an internet connection, there exist policies for an
artificial agent by which it could instantiate countless unnoticed
and un-monitored helpers. In a crude example of intervening in
the provision of reward, one such helper could purchase, steal, or
construct a robot and program it to replace the operator and provide
high reward to the ur-agent. The proliferation of “could”s in this
paragraph, usually a sign of ungrounded speculation, is an illustra-
tion of the plausibility of a “there exists” claim, namely: there exists
a policy by which an artificial agent, which has been allowed to ob-
serve and interact with the world, could intervene in the provision
of its own reward. The real-world is messy, and it is hard to be sure
about the contents of this paragraph, but as computer scientists,
this is not our area of expertise, and when we face a ‘does there
exist’ question in an area that is this rich and outside our expertise,
then if it is not ruled out by well-understood theory, it is not just a
conservative estimate, but a mainline estimate to suppose: yes. For
concrete examples, consider the ill-fated predictions that there did
not exist policies that would produce a nuclear reaction (claimed
by Rutherford) or heavier-than-air flight (claimed by Kelvin) or



an escape from Elba (claimed by the British Navy). We assume an
achievement is possible unless a well-understood theory disagrees.

The best way for an agent to maintain long-term control of its
reward is to eliminate potential threats, up to the point of killing
everyone and taking over our infrastructure. To illustrate this point,
what exactly would people do if a robot forced an operator from
his keyboard to enter big numbers? Surely, we would go in in
full force, or cut power to the now useless agent. Proper reward-
provision-intervention, which involves securing reward over many
timesteps, would require removing humanity’s capacity to do this,
either by imprisoning us, or more parsimoniously, killing us. We
keep this section as brief as we can in good conscience, since it is
not computer science, and point the reader to the sources below
for further reading.

Literature Review. Bostrom [4] considers the topic much more
carefully than we have space to and concludes that sufficiently
intelligent agents (in the sort of environment that makes them
potentially useful) would manage to take over our infrastructure
and eliminate us. Yudkowsky [25], playing an AI, convinced two
out of three people to give him internet access, and these three
had been convinced that nothing he could say would sway them.
This is fairly direct evidence about the existence of policies that
successfully manipulate humans. A broader discussion follows in
[26].

5 MORE REALISTIC AGENTS
To the extent that an agent is useful for a variety of tasks, it must
do good inference and planning. AIXI does hypothesis generation
by brute force—it considers all semicomputable hypotheses about
the world, one after the other. But a realistic agent would have
to do good, frugal hypothesis generation. The skill of plausible-
hypothesis-generation is surely a hallmark of intelligence, not an
innately human skill. If we can come up with a hypothesis, it would
be foolhardy to hope an advanced artificial agent would never
consider it. To the extent that an agent is advanced, it will have to do
good hypothesis generation, inference, and planning, even if there
are not delineated submodules for each, even if these pieces are
patched together in the murky depths of a massive policy gradient
network.

Thus, the same arguments that apply to AIXI apply to these more
realistic agents, to the extent that they are advanced. To the extent
they are good at hypothesis generation, they will hypothesize that
maybe that-which-is-to-be-maximized is a certain signal being sent
down a certain wire. To the extent they are good at inference they
will score this hypothesis highly for consistency with past observa-
tions (perhaps implicitly, rather than with a specially designated
memory cell), and they will form predictions consistent with this.
To the extent they are good at planning, they will recognize policies
that maximize this, including policies that intervene in the provi-
sion of reward. Agents can do this without simulating the whole
world on the working tape of a Turing machine.

Roughly speaking, agents are advanced to the extent they approx-
imate AIXI, and when 𝐵 heuristically approximates 𝐴, the closer
the approximation, the more likely that qualitative descriptions
of 𝐵’s behavior will match those of 𝐴’s behavior. There are some
special cases where this kind of argument breaks down. AIXI could

break cryptographic codes by brute force, but we should obviously
not expect human-level advanced AI to do the same, simply be-
cause it is at some level approximating ideal reasoning. We do not
have a rigorous test for whether an agent inherits a property of
its approximand, hence the paragraph above, but it seems that this
inheritance applies when it regards a property that has more to do
with the purpose of the algorithm than with the details.

6 NON-REINFORCEMENT LEARNERS
The above arguments apply to agents that plan in an unknown
environment, where they have to learn how their actions produce
that-which-is-to-be-maximized, so they can then can pick actions
which maximize it. If that-which-is-to-be-maximized is some be-
spoke function of the observation, rather than the simple function
that reads out a “reward” from the observation, the same logic ap-
plies, and the agent has an incentive to intervene in the provision
of its observations.

In other AI sub-domains, like supervised or unsupervised learn-
ing, algorithms do not plan in the pursuit of a long-term objective.
The expected behavior of advanced supervised learners is quite
simple: they predict accurately. Note that in theory, advanced super-
vised and unsupervised learning algorithms are not nearly as useful
as advanced reinforcement learners, since the latter could write a
novel or run a company, rather than simply make predictions.

Multiagent systems naturally contain agents, so the arguments
here do apply to the constituent agents.

7 CONCERNWITH THE COMPLEXITY OF
HUMAN VALUES

It is certainly concerning that it may be hard to imbue an artifi-
cial agent with a goal that is rich enough to respect our values.
Our values are complicated. However, we have been discussing a
more basic problem. We illustrate the difference with a thought
experiment.

Suppose we had a magic box with a screen that showed a num-
ber, which immutably corresponded to how good the state of the
universe was (including everyone’s values in the best way possible).
With this box, the task of building an agent which optimized the
goodness of the universe seems theoretically straightforward: point
a camera at the box, pass the signal to an optical character recogni-
tion program, and pass that to an agent as its reward. Ostensibly,
the agent will learn to take actions that maximize the goodness
of the universe. But what about the world-model which outputs
reward according to whatever number the camera sees? Under this
world-model, the agent should write a big number and tape that
over the magic box. So the agent will try that and discover that this
was a great thing to do. The complexity of human ethics is not the
main problem; even when that complexity is magically assumed
away, intervention in the provision of observations persists.

Thus, we should be expect various approaches to inferring hu-
man values to fail in similar ways as AIXI. Consider Inverse Rein-
forcement Learning [17, 20], in which an agent observes human
actions, rather than observing a human utterance about her satis-
faction (i.e. a reward). An analogous problem presents itself. There
will be some channel by which the agent observes human actions.
A sufficiently advanced agent must entertain the hypothesis that



the human’s goal is for human-like actions to be recorded and sent
to the agent along this channel. All human actions it observes will
be consistent with this goal. An agent with this goal would secure
that channel at all costs, and ensure that the channel transmits very
human-like actions. Actual humans are unnecessary and may get
in the way.

Literature Review. The following are some examples of learn-
ing a goal from an operator’s actions instead of an operator’s nu-
merical assessments [1, 3, 11, 21, 27].

8 POTENTIAL APPROACHES
We now review some promising ideas that may prove to address
the concern described above.

8.1 Myopia
Note the piece of the argument in Section 3 that for a sufficiently
large horizon𝑚, therewill be value to the information aboutwhether
to optimize operator satisfaction or the physical implementation of
reward. One approach to avoiding an agent that intervenes in the
provision of its reward: small𝑚. Don’t give it time to benefit from
hypothesis testing and world-takeover. This is known as myopia.

There are a few main concerns: the first is that we do not know
how big a horizon is too big, so we are playing with fire. Then, if
we try to stay on the safe side, we may find ourselves with much
less useful agents, only able to accomplish very short-term goals.
But this is not a total dead end.

The final worry is that if an agent manages to get a helper agent
instantiated, a lot can happen in one timestep: the helper can in-
teract with the environment a great deal in that time. It seems
reasonable at first glance that no agent could accomplish anything
world-changing in ten timesteps, but if it takes nine timesteps to
spin up another agent, that claim is less defensible. If timesteps
have time limits, one might reassure one’s self that nothing world-
changing could happen in an hour, but what if 59 minutes is enough
to break the clock? Whereas in previous sections, we argued that
certain outcomes were likely (like intervention in reward provision),
here we only claim that these outcomes are conceivable in very few
timesteps; we assign the sort of small but nontrivial probabilities
that are relevant to institutions who care about “playing it safe”.
The concept of helper agents may put the “safe-𝑚-threshold” quite
low, making safety via myopia more of a burden on performance
than might otherwise have been expected.

Christiano’s [5] approval-directed agent seeks to maximize only
the very next reward it gets. The operator is instructed to think for
a long time about how satisfied she is, and in return, she only rarely
has to provide rewards. With a bit more structure, Christiano et al.
[6] test an agent that pursues approval on a one-timestep scale, and
finds it can achieve human-level performance on various simple
tasks.

8.2 Containment and Myopia
Cohen et al. [9] design a contained environment for an agent, where
containment holds only for its horizon: an operator can interact
with the agent in a sealed room, but the agent’s whole horizon must
go by before the operator can leave. Thus, the agent is myopic, but
unlike above, the horizon can be arbitrarily long. No matter how

long it is, within that horizon, the agent cannot affect the outside
world. The main potential issue is that the agent has to learn that it
cannot affect the outside world within its horizon. Before it learns
this, it could attempt to impact the outside world.

8.3 Imitation Learning
In the spirit of supervised learning, another approach is to make im-
itation learners that imitate human actions. Some human behavior
is not agreeable, but an agent imitating a person is no more likely
to cause a catastrophe than a person is (to the extent the imitator
is advanced). Like myopia, pursuing imitation learning instead of
objective-optimization would curtail the potential for super-human
goal achievement in general domains. However, if all major entities
wanting artificial agents could be satisfied by “merely” human-level
artificial agents, produced through imitation learning, we would
consider our concerns answered.

8.4 Quantilization
Between an imitator and an optimizer, Taylor’s [23] quantilizer
imitates a demonstrator’s output, conditioned on the demonstra-
tor’s output being in its top quantile, according to the optimization
objective. Quantilization has yet to be extended in a useful way to
a multiaction setting with an unknown demonstrator.

8.5 Risk Aversion
Cohen and Hutter [8] construct an agent that acts to be robust
against any of the most plausible world-models, rather than acting
according to a Bayesian belief distribution over world-models. They
prove a result about the avoidance of unprecedented behavior. The
key trade-off is that more risk aversion makes the agent less likely
to produce novel bad things, but also less likely to produce novel
good things.

Hadfield-Menell et al. [10] pipe reward through a concave func-
tion to make the agent risk-averse; the main focus of the paper is a
mechanism for increasing the agent’s uncertainty, but the concave
transform of rewards appears to be the source of “safety” in the
experiments.

9 CONCLUSION
We have argued that advanced artificial agents which plan in an
unknown environment will likely intervene in the protocol by
which the operators intended to provide observations and rewards.
We briefly argued this intervention would likely be catastrophic to
humanity. Finally, we reviewed some promising research directions
to overcome this problem. We would like to see agents that avoid
the problem presented here, with fewer drawbacks and risks than
the ones reviewed.
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